CHROM. 10,775

Note

Separation of isomeric pentacyclic triterpenols by capillary gas chromatography

WIM J. BAAS

Botanical Laboratory, University of Utrecht, Lange Nieuwstraat 106, Utrecht (The Netherlands) (Received November 3rd, 1977)

During investigations on *Euphorbia latex* triterpenes¹ some problems arose with regard to the identification of the triterpenols present in the saponified extract. In addition to cycloartenol, esters of a triterpene were found which could be either one of the isomers, β -amyrin, or germanicol. Both conventional gas-liquid chromatography (GLC) and thin-layer chromatography (TLC) on silica containing π -complexing metal salt were insufficient to resolve fully a mixture of the two isomers. Nevertheless, by means of mass-fragmentography, the presence of both compounds was demonstrated^{1,2}. For further investigations separation of the compounds was necessary and capillary GLC appeared to be one possible way to achieve this aim.

EXPERIMENTAL

 β -Amyrin and α -amyrin were purchased from C. Roth (Karlsruhe, G.F.R.); germanicol was a gift from Miss W. H. Hui, University of Hong Kong, and lupeol was isolated from the seed coat of *Lupinus luteus*³. Separations were carried out on a Packard 427 gas chromatograph with a capillary column, 25 m \times 0.24 mm I.D. coated with SE-30. Temperature was 270° isothermal, carrier gas N₂, flow through the column 0.5 ml/min, make-up gas 25 ml/min. 5 α -Cholestane was added as internal standard (absolute retention time 14.4 min).

RESULTS

In addition to β -amyrin and germanicol two other isomers, lupeol and α amyrin, were investigated. The figure shows a chromatogram of a mixture of these four triterpenols. The relative retention times indicate a good separation of three of the four compounds. The separation of germanicol (2.84) and β -amyrin (2.76), which was hitherto very difficult to obtain, was now satisfactorily achieved. However, it did not appear to be possible to separate α -amyrin (3.03) and lupeol (3.01) in this way, but these compounds can easily be separated by chromatography on silver nitrateimpregnated silica⁴.

Fig. 1. Separation of pentacyclic triterpenols by capillary gas chromatography. $1 = 5\alpha$ -Cholestane; $2 = \beta$ -amyrin; 3 = germanicol; $4 = \alpha$ -amyrin and lupeol.

ACKNOWLEDGEMENT

I am grateful to Dr. Ir. J. A. Luyten of Packard-Becker, Delft, for performing the analyses.

REFERENCES

- 1 W. J. Baas, Planta med., 32 (1977) 1.
- 2 W. J. Baas, in preparation.
- 3 A. Likiernik, Ber. Deut. Chem. Ges., 24 (1891) 183.
- 4 Z. Kasprzyk, J. Pyrek and J. Slowowski, Bull. Acad. Polon. Sci., Sér. Sci. Biol., 12 (1967) 723.

1